sum_square
sum_square(
x: &Tensor<T>,
dims:
&[i64]
| &[i64; _]
| [i64; _]
| Vec<i64>
| &Vec<i64>
| i64,
keepdim: bool
) -> Result<Tensor<T>, TensorError>
Compute the sum of squares of elements along the specified dimensions
Parameters:
x
: Input tensor
dims
: Dimensions to reduce over
keepdim
: Whether to keep the reduced dimensions with length 1
Returns:
Tensor with type T
Examples:
use hpt::{ops::NormalReduce, Tensor, error::TensorError};
fn main() -> Result<(), TensorError> {
// Sum of squares over dimension 0
let a = Tensor::<f32>::new([2.0, 3.0]);
let b = a.sum_square([0], false)?;
println!("{}", b); // [13.] // 2^2 + 3^2 = 13
// Sum of squares over multiple dimensions with keepdim=true
let c = Tensor::<f32>::new([[1.0, 2.0], [3.0, 4.0]]);
let d = c.sum_square([0, 1], true)?;
println!("{}", d); // [[30.]] // 1^2 + 2^2 + 3^2 + 4^2 = 30
Ok(())
}
Backend Support
Backend | Supported |
---|---|
CPU | ✅ |
Cuda | ✅ |