logsumexp
logsumexp(
x: &Tensor<T>,
dims:
&[i64]
| &[i64; _]
| [i64; _]
| Vec<i64>
| &Vec<i64>
| i64,
keepdim: bool
) -> Result<Tensor<C>, TensorError>
Compute along the specified dimensions.
Parameters:
x
: Input tensor
dims
: Dimensions to reduce over
keepdim
: Whether to keep the reduced dimensions with length 1
Returns:
Tensor with type C
Examples:
use hpt::{ops::FloatReduce, Tensor, error::TensorError};
fn main() -> Result<(), TensorError> {
// LogSumExp over dimension 0
let a = Tensor::<f32>::new([1.0, 2.0, 3.0]);
let b = a.logsumexp([0], false)?;
println!("{}", b); // [3.4076061]
// LogSumExp over multiple dimensions with keepdim=true
let c = Tensor::<f32>::new([[1.0, 2.0], [3.0, 4.0]]);
let d = c.logsumexp([0, 1], true)?;
println!("{}", d); // [[4.4401898]]
Ok(())
}
Backend Support
Backend | Supported |
---|---|
CPU | ✅ |
Cuda | ✅ |